Optical Resolution through Minimum Derivatization of Chiral Biological Samples

Takuya Matsui, Tomio Ishida Japan Tobacco Inc. Toxicology Research Laboratories Central Pharmaceutical Research Institute

Background

University

Major: Organic Chemistry

Entered JT

Chemical Research Laboratories

Medicinal Chemist: R&D for small molecule drugs

Toxicology Research Laboratories

Analytical Chemist: R&D for small molecule drugs

Obtained Ph.D: Formation of Bulky DNA Adducts by Non-Enzymatic

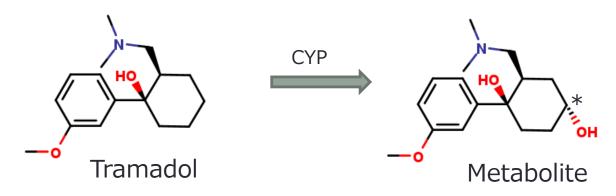
Production of 1,2-Naphthoquinone-Epoxide from 1,2-Naphthoquinone under Physiological Conditions

Strong area Small molecules and organic chemistry

Topic of JBF

Topics involved in "Bioanalysis"

- > Bioanalysis
- Guideline
- Method validation
- Biomarker
- LBA analysis

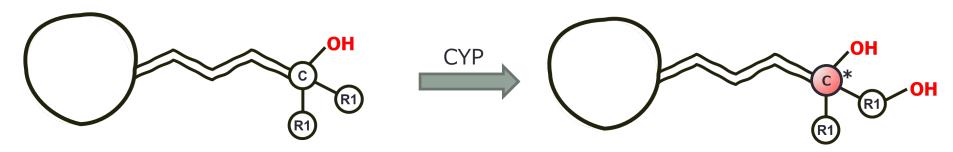

The method I introduce today (developed in our lab.)

- Metabolites of small molecule drugs
- Optical resolution
- Derivatization (Organic chemistry)

Issues in the analysis of small molecule drugs

Chiral center: generated after metabolization

Biological samples contain "water".


Many samples should be analyzed. generally • • •

- Chiral column
- ▶ Derivatization to diastereomers → separation using conventional columns
 - ✓ Derivatization after extraction → needs to be dried
 - → liquid-liquid two phase extraction

Many samples should be analyzed.

Our case

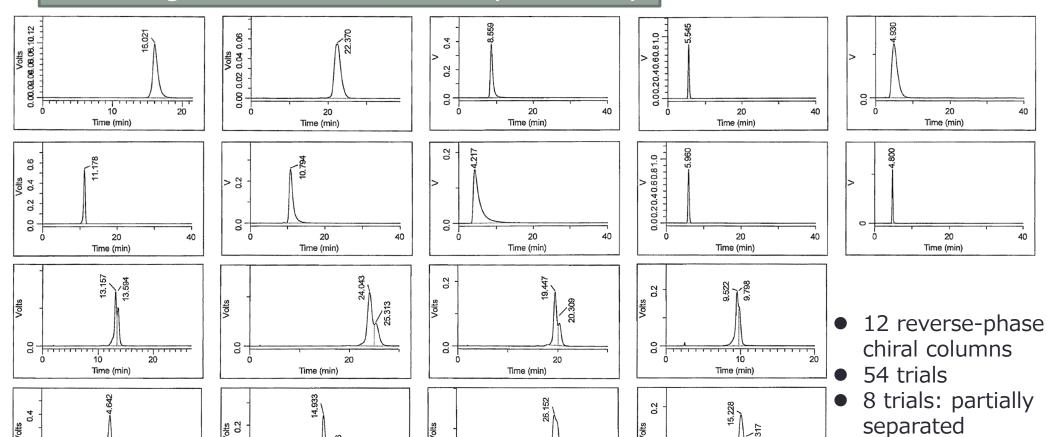
Sorry for not showing entire structure....

Enantiomer was produced through CYP oxidation

Our impression after watching the structure · · ·

- Chiral center was far from the bulky site
- Chiral center was located on alkyl chain with rotatable bonds

Difficult to separate using chiral column


Our trial

Time (min)

Trial using various chiral columns (outsource)

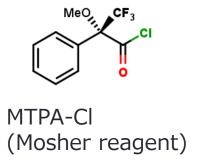
20

Time (min)

20

Time (min)

Time (min)


Extremely difficult to separate → need to be modified

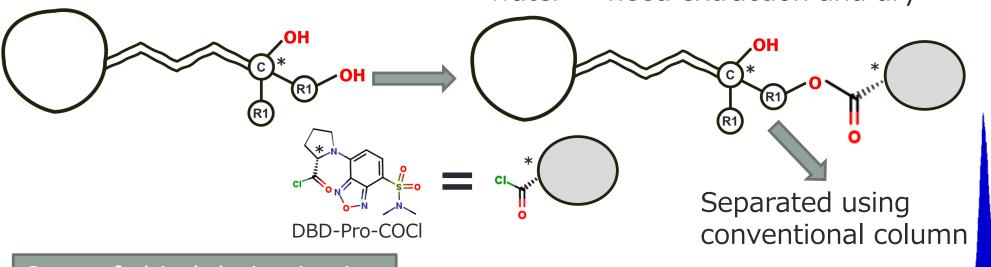
ひ と の と き を、 想 う。

Chiral derivatization

"Common way" is derivatization to diastereomers

Derivatization reagents

DBD-Pro-COCI



Approach: Chiral derivatization

Derivatization to diastereomer

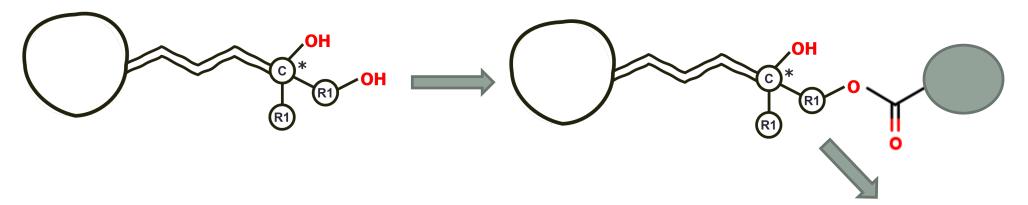
Esterification using chiral acid chloride

- Not separated completely (about 60%)
- No efficient reaction in the presence of water → need extraction and dry

Cons of chiral derivatization

Acid chlorides: unstable in water, complicated pretreatment

Reactivity: different reactivities to each enantiomer


> Availability: difficult to obtain in large quantities

Purity: optical purity of reagent itself

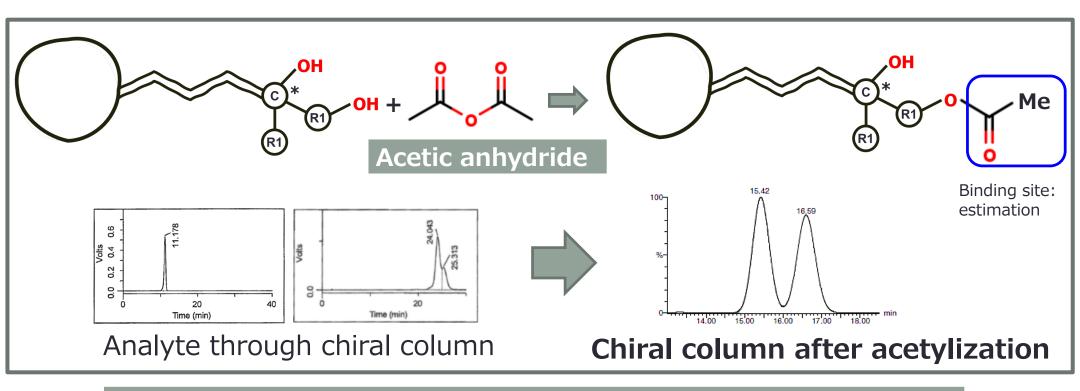
Planning: Non-chiral derivatization

Esterification using non-chiral reagent→ chiral column

Separation using chiral column

- ightharpoonup Steric environment ightharpoonup possibly separated by chiral column \cdots
- ightharpoonup Variety of reagents and conditions ightharpoonup possibly react in the presence of water...

Non-chiral derivatization: Trials


- Bulkiness ⇔ lipophilicity vs. hydrophilicity
- Water acid halide, mixed anhydride, anhydride...
- Usability: availability, price, irritative, safety

Difficult to meet all the criteria?

Non-chiral derivatization: Acetylization

Separation was achieved with acetyl group!

- Separated by minimum derivatization
- Esterified using acetic anhydride

Non-chiral derivatization: Acetylization

Cons of using acetic anhydride

Compact: High reactivity, reaction time, conversion

> Non-chiral : Similar reactivities to each enantiomer

> Stability in water: Acceptable water containing biological samples

Easy pretreatment (no evaporation)

Simple reaction: No need for extra reagents

> By-product (AcOH): Minimal impact on analytical/reaction conditions

Easily available: Excessive use

Methods

Pretreatment

Analyte 20 µL

← MeCN 10 μL← IS 10 μL

, ← MeCN 50 μL

Centrifugation

Supernatant 50 µL

← Acetic anhydride 20 µL

↓← Pyridine 30 μL

RT, 1hr

↓ ← Water 100 µL

50°C 0.5 hr

Centrifugation

Injection 5 µL

LC conditions

Column : CHIRALPAK IC-3, 3 µm, 4.6 ID×150 mm

Column temp. : 40° C

Mobile phase A : Water/FA = 1000/1 (v/v)Mobile phase B : MeCN/FA = 1000/1 (v/v)

Gradient:

Time (min)	%A	%В	Flow Rate
Initial	70	30	0.6
17.00	70	30	0.6
17.01	5	95	0.6
17.50	5	95	0.6
19.50	5	95	1.0
21.00	5	95	1.0
21.01	70	30	1.0
23.00	70	30	0.6
24.00	70	30	0.6

This method was used for GLP and clinical studies.

Conclusion

Resolution of enantiomer by derivatization with acetic anhydride

- > High reactivity
- > Similar reactivities to each enantiomer
- > Acceptable water containing samples
- By-product is AcOH
- > Easily available

This method is extremely useful for quantification of chiral biological samples.

