

Points to Note in Bioanalysis of Therapeutic Oligonucleotides by Ion-pair LC-MS/MS

Shin Nippon Biomedical Laboratories, Ltd. Suguru Fukuda

Copyright © Shin Nippon Biomedical Laboratories (SNBL), Ltd. All rights reserved

1

Introduction

Therapeutic Oligonucleotides in Japan, the US, and Europe (as of October 2022) *

Product name	International nonproprietary name	Classification	Modification, etc	DDS, ect	Country/Year	Target	Indication	Route of Administration
Vitravene	fomivirsen	Antisense	PS (full)	Naked	US 1998 EU 1999	CMV IE2 mRNA	CMV retinitis (AIDS patient)	Intravitreal
Macugen	pegaptanib	Aptamer	2'-OMe, 2'-F	Naked (PEG-conjugate)	US 2004 EU 2006 JP 2008	VEGF165 (Protein)	Exudative age-related macular degeneration	Intravitreal
Kynamro	mipomersen	Antisense	PS (full) 2'-MOE	Naked	US 2013	ApoB-100 mRNA	Homozygous familial hypercholesterolemia	Intravenously
Exondys 51	eteplirsen	Antisense	PS (full)	Naked	US 2016	Dystrophin pre-mRNA	Duchenne type muscular dystrophy	Intrathecal
Spinraza	nusinersen	Antisense	PS (full) 2'-MOE	Naked	US 2016 EU 2017 JP 2017	SMN2 pre-mRNA	Spinal muscular atrophy	Intramuscular
HEPLISAV-B	CpG1018	CpG oligo	PS (full)	Naked	US 2017 EU 2021	TLR9 (Protein)	Hepatitis B (prevention)	Subcutaneous
Tegsedi	inotersen	Antisense	PS (full) 2'-MOE	Naked	US 2018 EU 2018	TTR mRNA	Hereditary ATTR amyloidosis	Intravenously
Onpattro	patisiran	siRNA	2'-OMe	Lipid nanoparticle	US 2018 EU 2018 JP 2019	TTR mRNA	Hereditary ATTR amyloidosis	Subcutaneous
Waylivra	volanesorsen	Antisense	PS (full) 2'-MOE	Naked	EU 2019	ApoCIII mRNA	Familial hyperchylomicronemia	Subcutaneous
Givlaari	givosiran	siRNA	PS (partial) 2'-OMe, 2'-F	Naked (GalNAc-conjugate)	US 2019 EU 2020 JP 2021	ALAS1 mRNA	Acute hepatic porphyria	Subcutaneous
Vyondys 53	golodirsen	Antisense	Morpholino	Naked	US 2019	Dystrophin pre-mRNA	Duchenne type muscular dystrophy	Intravenously
Viltepso	viltolarsen	Antisense	Morpholino	Naked	JP 2020 US 2020	Dystrophin pre-mRNA	Duchenne type muscular dystrophy	Intravenously
Oxlumo	lumasiran	siRNA	PS (partial) 2'-OMe, 2'-F	Naked (GalNAc-conjugate)	US 2020 EU 2020	HAO mRNA	Primary Hyperoxaluria type I	Subcutaneous
Leqvio	inclisiran	siRNA	PS (partial) 2'-OMe, 2'-F	Naked (GalNAc-conjugate)	EU 2020 US 2021	PCSK9 mRNA	Hypercholesterolemia mixed dyslipidemia	Subcutaneous
Amondys 45	casimersen	Antisense	Morpholino	Naked	US 2021	Dystrophin pre-mRNA	Duchenne type muscular dystrophy	Intravenously
Amvuttra	vutrisiran	siRNA	PS (partial) 2'-OMe, 2'-F	Naked (GalNAc-conjugate)	US 2022 EU 2022 JP 2022	TTR mRNA	Hereditary ATTR amyloidosis	Subcutaneous

*: Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences HP URL : https://www.nihs.go.jp/mtgt/section2.html

Therapeutic Oligonucleotides Chemical Structure Affecting Analysis

Critical Point

- ESI-MS (Selection of precursor ion) Multiple negative charge states (H⁺, Na⁺ and K⁺ adduct ion)
- **MS/MS (Selection of product ion)** Fragmentation of multiple charged oligonucleotides
- Ion-pair LC-MS/MS Efficiency
 Retention vs ionization
- Quantitation

Internal standard selection

• Sample Preparation and Separation Conditions

Introduction and degradation of ion-pair reagent

- S^r

Critical Point

- ESI-MS (Selection of precursor ion) Multiple negative charge states (H⁺, Na⁺ and K⁺ adduct ion)
- MS/MS (Selection of product ion)
 Fragmentation of multiple charged oligonucleotides
- Ion-pair LC-MS/MS Efficiency Retention vs ionization
- Quantitation
 Internal standard selection
- Sample Preparation and Separation Conditions
 Introduction and degradation of ion-pair reagent

ESI-MS (Selection of precursor ion) : Method

Nat SPO

Na⁺ 'S

Mipomersen sodium

5'-<u>G^{Me}C^{Me}C^{Me}U^{Me}C</u>AGT^{Me}CTG^{Me}CTT^{Me}<u>C G^{Me}CA^{Me}C^{Me}C</u>- 3'

Molecular formula : $C_{230}H_{305}N_{67}O_{122}P_{19}S_{19}Na_{19}$

Monoisotopic mass: 7589.7486

Average mass: 7594.8005

The underlined residues are 2'-O-(2-methoxyethyl) nucleoside (Me).

All other residues are 2'-deoxynucleosides.

Substitution at the 5-position of the cytosine (C) and uracil (U) bases with a methyl group is indicated by ^{Me}.

MS/MS System	API5000 or Triple TOF 5600+				
Scan range	<i>m/z</i> 500-1200				
Mobile phase A	Ultrapure water				
Mobile phase B	Methanol : acetonitrile = 75 : 25				
Mobile phase C	1 mol/L HFIP and 150 mmol/L DIPEA in methanol				
Flow rate	0.3 mL/min				
Composition	A : B : C = 60 : 30 : 10				
T-infusion	20 μL/min (Analyte : 100 ng/mL)				

HFIP: Hexafluoroisopropanol **DIPEA**: *N*,*N*-Diisopropylethylamine

SNBL

Formation of multiple negative charge states

Multiple negative charge states

Multiple negative charge states (H⁺, Na⁺ and K⁺ adduct ion)

MS/MS System: Triple TOF 5600+

TOF MS scan

X axis: monoisotopic ion

Y axis: ion intensity

m/z. Da

Multiple negative charge states (H⁺, Na⁺ and K⁺ adduct ion)

>Analyte:

ASO-1: MALAT1 (metastasis associated in lung adenocarcinoma transcript-1) - ASO [Sequence] A(L)^G(L) ^T(L) ^a^c^t^a^t^a^g^c^a^t^5(L) ^T(L) ^G(L)^{*1} (16 mer, MW : 5303.32) *2

>Internal Standard Candidate:

- ASO-2: ASO with the same modification as the above ASO but with a different sequence
 [Sequence] G(L)^G(L) ^5(L) ^c^a^a^t^a^c^g^c^c^g^T(L) ^5(L) ^A(L) *1 (16 mer, MW : 5288.29)
- PS ASO-1: The above ASO with phosphorothioate modification only
 [Sequence] A^G^U^a^c^t^a^t^a^g^c^a^t^C^U^G^{*1} (16 mer, MW : 5189.23)
- 3 2'-OMe ASO-1: The above ASO with 2'-OMe modification instead of LNA modification [Sequence] A(M)^G(M) ^U(M) ^a^c^t^a^t^a^g^c^a^t^C(M) ^U(M) ^G(M) *1 (16 mer, MW : 5273.41)
- MOE ASO-1: The above ASO with MOE modification instead of LNA modification [Sequence] A(m)^G(m) ^U(m) ^a^c^t^a^t^a^g^c^a^t^C(m) ^U(m) ^G(m) *1 (16 mer, MW : 5579.80)
- **S ASO-3**: The 5' terminal G(L) was deleted from the above ASO

[Sequence] A(L)^G(L) ^T(L) ^a^c^t^a^t^a^g^c^a^t^5(L) ^T(L) *1 (15 mer, MW : 4930.05)

- * 1: Upper Case=RNA / Lower Case=DNA / N(L)=LNA / N(M)=2'-OMe / N(m)=MOE / 5(L)=LNA_mC / 5(m)= MOE _mC / ^=Phosphorothioate
- * 2: Paymaan Jafar-Nejad, et al. The atlas of RNase H antisense oligonucleotide distribution and activity in the CNS of rodents and non-human primates following central administration. Nucleic Acids Res. 2021 Jan 25;49(2):657-673.

LNA : Locked nucleic acid, **mC** : 5-Methylcytosine, **2'-OMe** : 2'-O-Methyl, **MOE** : 2'-Methoxyethyl

ASO1: Multiple negative charge states (Na⁺ adduct ion)

Internal standard candidate : Multiple negative charge states (Na⁺ adduct ion)

ESI-MS (Selection of precursor ion) : Method

Analysis target	ASO-1								
HPLC System	Shimadzu 30A s	nadzu 30A system							
Column	ACQUITY Premier BEH C18 Column with VanGuard FIT (1.7 µm, 2.1 x 100 mm, Waters)								
Column temperature	60°C								
Mobile phase A	Ultrapure water								
Mobile phase B	Methanol : aceto	onitrile = 75 : 25							
Mobile phase C	1 mol/L HFIP an	d 150 mmol/L DIF	PEA in methanol						
Injection volume	3 µL								
Needle wash solvent	Water / methanc	Water / methanol / isopropanol / acetylacetone / 0.5 M EDTA (pH 8.0) (500:250:250:2:2)							
Flow rate	0.3 mL/min								
	Time (min)	A Conc. (%)	B Conc. (%)	C Conc. (%)	HFIP: Hexafluoroisopropanol				
	0.00	90.0	0.0	10.0	DIPEA: N,N-Diisopropylethylamine				
	0.50	90.0	0.0	10.0					
Gradient	27.00	0.0	90.0	10.0					
	29.00	0.0	90.0	10.0					
	29.01	90.0	0.0	10.0					
	34.00	90.0	2.5	10.0					
MS/MS system	34.00 API5000	90.0	2.5	10.0					
MS/MS system Scan type	34.00 API5000 Selected Reaction	90.0 on Monitoring	2.5	10.0					

The peak (ASO-1) was confirmed at the same retention time. ASO-1 interfered with monitoring of other oligonucleotides.

Critical Point

- ESI-MS (Selection of precursor ion) Multiple negative charge states (H⁺, Na⁺ and K⁺ adduct ion)
- MS/MS (Selection of product ion) Fragmentation of multiple charged oligonucleotides
- Ion-pair LC-MS/MS Efficiency
 Retention vs ionization
- Quantitation
 Internal standard selection
- Sample Preparation and Separation Conditions
 Introduction and degradation of ion-pair reagent

ESI-MS (Selection of product ion) : Method

- Question: Is it possible to give selectivity to product ions?
- Answer: It is possible, but at the expense of sensitivity.
- ≻Analyte:
- ASO-1: MALAT1 (metastasis associated in lung adenocarcinoma transcript-1) ASO

[Sequence] A(L)^G(L) ^T(L) ^a^c^t^a^t^a^g^c^a^t^5(L) ^T(L) ^G(L) *1 (16 mer, MW : 5303.32)

* 1: Upper Case=RNA / Lower Case=DNA / N(L)=LNA / 5(L)=LNA_mC / ^=Phosphorothioate

MS/MS System API5000 or Triple TOF 5600+ Scan range m/z 50-1200 (Product ion scan) Mobile phase A Ultrapure water Mobile phase B Methanol : acetonitrile = 75 : 25 Mobile phase C 1 mol/L HFIP and 150 mmol/L DIPEA in methanol Flow rate 0.3 mL/min Composition A : B : C = 60 : 30 : 10**T-infusion** 40 µL/min (Analyte : 100 ng/mL)

LNA : Locked nucleic acid **mC** : 5-Methylcytosine

ESI-MS (Selection of product ion) : Results

ESI-MS (Selection of product ion) : Results

Unlike other product ions, adduct ions are not observed in the breaker ions.

Meaning it is not a spectrum derived from oligonucleotides.

Critical Point

- ESI-MS (Selection of precursor ion) Multiple negative charge states (H⁺, Na⁺ and K⁺ adduct ion)
- MS/MS (Selection of product ion)
 Fragmentation of multiple charged oligonucleotides
- Ion-pair LC-MS/MS Efficiency
 Retention vs ionization
- Quantitation
 Internal standard selection
- Sample Preparation and Separation Conditions
 Introduction and degradation of ion-pair reagent

Point at issue

- ① Sensitivity is dispersed due to the generation of multiply charged ions and adduct ions.
- ② Oligonucleotides interfere with each other's monitoring.

Measures

- ① Change fluorinated alcohol and alkylamine (ion-pair reagent).
- ② Separate the target of analysis and the internal standard.

Ion-pair LC-MS/MS Efficiency

SNBL

Ion-pair LC-MS/MS Efficiency : Method

HPLC System	Shimadzu 30A system							
Column	ACQUITY Premier BEH C18 Column with VanGuard FIT (1.7 µm, 2.1 x 100 mm, Waters)							
Column temperature								
Mobile phase A	Ultrapure water							
Mobile phase B	Methanol : acetonitrile = 75 : 25							
Mobile phase C	1 mol/L Fluorinate	ed alcohol and 15	50 mmol/L Alkylan	nine in methanol				
Injection volume	10 µL							
Needle wash solvent	Water / methanol / isopropanol/ acetylacetone / 0.5 M EDTA (pH 8.0) (500:250:250:2:2)							
Flow rate	Sum of A and B : 0.27 mL/min, C : 0.03 mL/min							
	Time (min)	A Conc. (%)	B Conc. (%)	Fluorinated alcohol				
	0.00	97.5	2.5	Hexafluoroisopropanol (HFIP) Trifluoroathanol (TEE)				
	0.20	97.5	2.5	 Pentafluoropropanol (PFP) 				
Cradiant	8.00	70	30	Alkylamine				
Gradient	8.01	10	90	• <i>N,N</i> -Diisopropylethylamine (DIPEA)				
	11.00	10	90	 Octylamine (OA) Diisopropylamine (DIPA) 				
	11.01	97.5	2.5	Hexylamine (HA) Tributulamine (TDA)				
	15.00	97.5	2.5	 <i>N,N</i>-Dimethylcyclohexylamine (DMCHA) 				

Ion-pair LC-MS/MS Efficiency : Materials and Evaluation

Materials

- Ion-pairs (6 reagents) and fluorinated alcohols (3 reagents) : 18 ways in total
 Analyte:
- ASO-1: MALAT1 (metastasis associated in lung adenocarcinoma transcript-1) ASO [Sequence] A(L)^G(L) ^T(L) ^a^c^t^a^t^a^g^c^a^t^5(L) ^T(L) ^G(L)*1 (16 mer, MW : 5303.32)
- Internal Standard Candidate:
 - PS ASO-1: The above ASO with phosphorothioate modification only
 - [Sequence] A^G^U^a^c^t^a^t^a^g^c^a^t^C^U^G^{*1} (16 mer, MW : 5189.23)
- Sample: Reference
- * 1: Upper Case=RNA / Lower Case=DNA / N(L)=LNA / N(M)=2'-OMe / N(m)=MOE / 5(L)=LNA_mC / 5(m)= MOE _mC / ^=Phosphorothioate

Evaluation

LNA : Locked nucleic acid **mC** : 5-Methylcytosine

- Sensitivity comparison of each mobile phase
- Separation and chromatogram comparison of each mobile phase

Intensity (Ion-pair LC-MS/MS Efficiency) : Results

Separation (Ion-pair LC-MS/MS Efficiency) : Results

Resolution of oligonucleotides in each mobile phase Chromatograms of oligonucleotides in mobile phase containing HFIP

> The mobile phase was determined from the sensitivity and resolution.

Ion pair reagent: DIPEA and DIPA

Fluorinated alcohol: HFIP

Critical Point

- ESI-MS (Selection of precursor ion) Multiple negative charge states (H⁺, Na⁺ and K⁺ adduct ion)
- MS/MS (Selection of product ion)
 Fragmentation of multiple charged oligonucleotides
- Ion-pair LC-MS/MS Efficiency
 Retention vs ionization
- Quantitation
 Internal standard selection
- Sample Preparation and Separation Conditions
 Introduction and degradation of ion-pair reagent

Quantitation (Internal standard selection) : Materials

>Analyte:

ASO-1: MALAT1 (metastasis associated in lung adenocarcinoma transcript-1) - ASO
 [Sequence] A(L)^G(L) ^T(L) ^a^c^t^a^t^a^g^c^a^t^5(L) ^T(L) ^G(L) *1 (16 mer, MW : 5303.32) *2
 ➢ Internal Standard Candidate:

- ASO-2: ASO with the same modification as the above ASO but with a different sequence
 [Sequence] G(L)^G(L) ^5(L) ^c^a^a^t^a^c^g^c^c^g^T(L) ^5(L) ^A(L) *1 (16 mer, MW : 5288.29)
- PS ASO-1: The above ASO with phosphorothioate modification only
 [Sequence] A^G^U^a^c^t^a^t^a^g^c^a^t^C^U^G^{*1} (16 mer, MW : 5189.23)
- ③ 2'-OMe ASO-1: The above ASO with 2'-OMe modification instead of LNA modification [Sequence] A(M)^G(M) ^U(M) ^a^c^t^a^t^a^g^c^a^t^C(M) ^U(M) ^G(M) *1 (16 mer, MW : 5273.41)
- ④ MOE ASO-1: The above ASO with MOE modification instead of LNA modification [Sequence] A(m)^G(m) ^U(m) ^a^c^t^a^t^a^g^c^a^t^C(m) ^U(m) ^G(m) *1 (16 mer, MW : 5579.80)
- **S ASO-3**: The 5' terminal G(L) was deleted from the above ASO

[Sequence] A(L)^G(L) ^T(L) ^a^c^t^a^t^a^g^c^a^t^5(L) ^T(L) *1 (15 mer, MW : 4930.05)

* 1: Upper Case=RNA / Lower Case=DNA / N(L)=LNA / N(M)=2'-OMe / N(m)=MOE / 5(L)=LNA_mC / 5(m)= MOE _mC / ^=Phosphorothioate * 2: Paymaan Jafar-Nejad, et al. The atlas of RNase H antisense oligonucleotide distribution and activity in the CNS of rodents and non-human primates following central administration. Nucleic Acids Res. 2021 Jan 25;49(2):657-673.

LNA: Locked nucleic acid, mC: 5-Methylcytosine, 2'-OMe: 2'-O-Methyl, MOE: 2'-Methoxyethyl

Quantitation (Internal standard selection) : Method

Analysis target	ASO-1, 4 candidate internal standard								
HPLC System	Shimadzu 30A system								
Column	ACQUITY Premier BEH C18 Column with VanGuard FIT (1.7 µm, 2.1 x 100 mm, Waters)								
Column temperature	60°C								
Mobile phase A	Ultrapure water								
Mobile phase B	Methanol : acetonitrile = 75 : 25								
Mobile phase C	1 mol/L HFIP and 150 mmol/L DIPEA in methanol								
Injection volume	3 μL								
Needle wash solvent	Water / methanol / isopropanol/ acetylacetone / 0.5 M EDTA (pH 8.0) (500:250:250:2:2)								
Flow rate	0.3 mL/min								
	Time (min)	A Conc. (%)	B Conc. (%)	C Conc. (%)	HFIP: Hexafluoroisopropanol				
	0.00	90.0	0.0	10.0	DIPEA : <i>N</i> , <i>N</i> -Diisopropylethylamine				
	0.50	90.0	0.0	10.0					
Gradient	27.00	0.0	90.0	10.0					
	29.00	0.0	90.0	10.0					
	29.01	90.0	0.0	10.0					
	34.00	90.0	2.5	10.0					
MS/MS system	API5000								
Scan type	Selected Reaction Monitoring								
Monitored Ion	See Figure (Next page)								

Quantitation (Internal standard selection) : Results

The internal standard was determined from the resolution.
Internal standard: PS ASO-1, MOE ASO-1

Introduction

Critical Point

- ESI-MS (Selection of precursor ion) Multiple negative charge states (H⁺, Na⁺ and K⁺ adduct ion)
- MS/MS (Selection of product ion)
 Fragmentation of multiple charged oligonucleotides
- Ion-pair LC-MS/MS Efficiency
 Retention vs ionization
- Quantitation
 Internal standard selection

• Sample Preparation and Separation Conditions

Introduction and degradation of ion-pair reagent

Carry over (Separation conditions) : Method

Arrows (\downarrow) indicate the timing of injection when multiple injections of injection reagent for carry over prevention is conducted.

Injection reagent for carry over prevention

- 1 No injection
- 2 5 mM EDTA × 3 injections
- ③ Blank × 3 injections
- (4) 5% ammonia × 3 injections
- 5 Blank including MOE × 3 injections
- 6 Blank × 4 injections
- \bigcirc Blank including MOE ×4 injections

> 5 mM EDTA and 5% ammonia are used as stripping reagents.

> Blanks and MOE are used as stripping and blocking reagents.

Sample injection order:

MOE: 2'-Methoxyethyl LLOQ: lower limit of quantification ULOQ: Upper limit of quantification

Carry over (Separation conditions) : Results

Carry over vs previous sample (vs LLOQ)

- > Each stripping reagents was effective against carry over.
- Blocking reagent increase effectiveness of stripping reagents against carry over.
- > The effect of the blocking reagent does not change after 3 or more injections.

Introduction and degradation of ion-pair reagent : Condition 1

The ion-pair reagent (alkylamine) in the aqueous mobile phase deteriorates

due to pH increase and high temperature. (Expansion of micelles)

- (1)Micellization of alkylamines shortens the retention time.
- (2)Ionization suppression occurs due to micellization of alkylamines.

Electron micrograph of micellization of alkylamines*

* Li N, et al. Alkylamine ion-pairing reagents and the chromatographic separation of oligonucleotides. J. Chromatogr. A 1580, 110–119 (2018).

Introduction and degradation of ion-pair reagent : Method

HPLC System	Shimadzu 40A system									
Column	ACQUITY Premier BEH C18 Column with VanGuard FIT (1.7 µm, 2.1 x 100 mm, Waters)									
Column temperature	60°C									
Mobile phase A	100 mmol/L H	FIP, 15 mmol/	L DIPEA in 10%	→ Ultrapure water						
Mobile phase B	100 mmol/L H	FIP,15 mmol/L	DIPEA in 75%	\rightarrow 75% methanol / 25% acetonitrile						
Mobile phase C	-					\rightarrow 1 mol/L HFIP, 150 mmol/L DIPEA in methanol				
Injection volume	5 µL									
Needle wash solvent	Water / metha	nol / 2-propan	ol/ acetylaceto	ne/ 0.5 M	EDTA (pH 8.0) (500:2	50:250:2:2)				
Flow rate	0.3 mL/min					\rightarrow A-B : 0.27 mL/min, C : 0.03 mL/min				
	Time (min)	A Conc. (%)	B Conc. (%)	DIPEA :	N,N-Diisopropylethylam	ine				
	0.00	97.5	2.5	HFIP :	Hexafluoroisopropanol					
	0.20	97.5	2.5							
	8.00	70	30							
	8.01	10	90							
	11.00	10	90							
	11.01	97.5	2.5							
	15.00	97.5	2.5							

Introduction and degradation of ion-pair reagent : Results

Sensitivity changes due to different ion-pairing reagent introduction *

* Guilherme J Guimaraes, et al. The critical role of mobile phase pH in the performance of oligonucleotide ion-pair LC–MS methods. Future Science OA (2021) FSO753.

Degradation of ion-pair reagent (eluent) : Results

> Degradation of alkylamine in both mobile phase and eluent adversely affects sensitivity (MS) and recovery (SPE).

- In order to prevent deterioration of the ion-pair reagent, it is necessary to pay attention to the water content and pH control of the mobile phase and elution buffer.
- * Guilherme J Guimaraes, et al. The critical role of mobile phase pH in the performance of oligonucleotide ion-pair LC–MS methods. Future Science OA (2021) FSO753.

Conclusion

Selection of internal standard

In order to achieve high sensitivity analysis, it is necessary to select the product ion of m/z 94.9. In that case, the selection of the precursor ion becomes important.

• Separation of the analyte and internal standards in HPLC

It is better to use HFIP (fluorinated alcohol) and DIPEA or DIPA (ion-pair reagent) in mobile phases to achieve high sensitivity and high resolution.

• Prevention of ion-pair reagents deterioration Mobile phase

Do not mix ion-pair reagents with water, and ion-pairing reagents should be mixed at time of analysis.

Elution buffer in SPE

The elution buffer should be of high pH (>12) and should be freshly prepared.

• Carry over measures

Carry over can be reduced by injecting a stripping reagent. Furthermore, the effect can be enhanced by using a blocking reagent together.