

Understanding qPCR* bioanalysis issues before validation planning (DG2017-33) –Update-

Daiichi Sankyo Co., Ltd. Takeshi Hanada

* Quantitative Polymerase Chain Reaction

DG2017-33 [qPCR for Bioanalysis]

Members

Name	Affiliation
Asako Uchiyama	Shin Nippon Biomedical Laboratories, Ltd.
Yoichi Naritomi	Healios K.K.
Yoshitaka Hashimoto	Ono Pharmaceutical Co., Ltd.
Takeshi Hanada	Daiichi Sankyo Co., Ltd.
Kyoko Watanabe	Daiichi Sankyo Co., Ltd.
Kumiko Kitta	CMIC Pharma Science Co., Ltd.
Genki Suzuki	LSI Medience Corporation
Takao Komatsuno	AnGes, Inc.
Mari Masumoto	Astellas Pharma Inc.
Sakae Kohara	Shin Nippon Biomedical Laboratories, Ltd.
Takahiro Nakamura	Shin Nippon Biomedical Laboratories, Ltd.

http://bioanalysisforum.jp/

JBF

DG2017-33 [qPCR for Bioanalysis]

There are no guideline regarding qPCR as bioanalysis tool

Current Status

To investigate the validation contents, there is a lack of "common awareness" on experimental methods, handling of values, etc.

Review

For reprint orders, please contact: reprints@future-science.com

Understanding quantitative polymerase chain reaction bioanalysis issues before validation planning: Japan Bioanalysis Forum discussion group

Asako Uchiyama¹, Yoichi Naritomi², Yoshitaka Hashimoto³, Takeshi Hanada^{*,4}, Kyoko Watanabe⁴, Kumiko Kitta⁵, Genki Suzuki⁶, Takao Komatsuno⁷ & Takahiro Nakamura¹

we summarized the characteristics of qPCR as a tool and the points to consider when using it for Bioanalysis.

Bioanalysis

Bioanalysis 14(21), 1391-1405 (2022)

BF Referred qPCR guideline and white papers

The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments

Stephen A. Bustin,^{1*} Vladimir Benes,² Jeremy A. Garson,^{3,4} Jan Hellemans,⁵ Jim Huggett,⁶ Mikael Kubista,^{7,8} Reinhold Mueller,⁹ Tania Nolan,¹⁰ Michael W. Pfaffl,¹¹ Gregory L. Shipley,¹² Jo Vandesompele,⁵ and Carl T. Wittwer^{13,14} **Guidance for Industry**

Gene Therapy Clinical Trials – Observing Subjects for Delayed Adverse Events

ICH S12 Guideline on nonclinical biodistribution harmonisat considerations for gene therapy products

Step 5

19 April 2023

2020 White Paper on Recent Issues in Bioanalysis: Vaccine Assay Validation, qPCR Assay Validation, QC for CAR-T Flow Cytometry, NAb Assay Harmonization and ELISpot Validation (Part 3 – Recommendations on Immunogenicity Assay Strategies, NAb Assays, Biosimilars and FDA/EMA Immunogenicity Guidance/Guideline, Gene & Cell Therapy and Vaccine Assays)

U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research November 2006

International Pharmaceutical Regulators Programme

Expectations for Biodistribution (BD) Assessments for Gene Therapy (GT) Products

Recommendations on qPCR/ddPCR assay validation by GCC

bioanaly

- 1. Consideration common by qPCR, RT-qPCR
- 2. RT-qPCR considerations
- 3. Specific issues for cell quantification
- 4. Assay assurance

1. Consideration common by qPCR, RT-qPCR

- 2. RT-qPCR considerations
- 3. Specific issues for cell quantification
- 4. Assay assurance

General Experimental Flow for qPCR, RT-qPCR

JBF

PCR facilities

To prevent contamination, the area should be segmented for each procedure, and one-way movement is recommended. Use of PCR cabinet is also effective to prevent contamination.

General Experimental Flow for qPCR, RT-qPCR

JBF

JBF **NA extraction (Step3)**

There are many methods such as column method using silica, magnetic bead method, phenol/chloroform method.

The extraction efficiency from tissue is varied from 5 to 100% (Different from sample, not constant)

 \Rightarrow Conventional methods cannot accurately calculate the concentration of a target NA in a tissue.

There are many methods such as column method using silica, magnetic bead method, phenol/chloroform method.

	Principle	Pros	Cons	
Phenol/ chloroform method	Protein is denatured by organic solvent.	High-purity NAs can be recovered at high concentrations.	However, the treatment process is complicate and low- throughput	
Membrane method	NA is purified by column	Simple, convenient and widely used High-throughput	Extraction efficiency of is lower than that of other methods.	
Magnetic bead method	NA is isolated by magnetic beads	Most suited for automation and high throughput. High extraction efficiency	May not function in highly viscous samples Residual beads may contaminate samples	
15 th JBF Symposium, DG2017-33				

Possible solution for extraction efficiency

Target concentration in tissue can be calculated by enabling calculation of extraction efficiency.

B

General Experimental Flow for qPCR, RT-qPCR

JBF

Nanovue

etc.

Fluorescence method

- Specifically detect DNA or RNA by fluorescence
- **Pro:** Not affected by materials other than analyte present in the sample

Japan Bioanalysis Forum

Con: Not yet generalized

Ex) PicoGreen RiboGreen Qubit

JBF

Japan Bioanalysis Forum Measurement of NA concentration (Step 4) - Evaluation of NA quality -

Poor quality may inhibit the reaction and reduce the number of template DNA sequences due to NA fragmentation.

General Experimental Flow for qPCR, RT-qPCR

JBF

qPCR measurement (Step5) - Reference Standard -

For absolute quantification, reference standards with known copy numbers are required.

Types of reference standard

	Pros	Cons
Plasmid	 Highly stable Easy to produce large amounts (initial cloning is necessary) 	•Equivalence to Analyte
Synthetic NA	 Flexibility of sequencing No cloning required 	 Equivalence to Analyte
Genomic NA	 Equivalent to analyte 	 Low stability Difficult to produce large amounts, and take long time Lot-to-lot variation

In general, plasmids are often used.

qPCR measurement (Step5) - Matrix Effect -

Matrix effect in qPCR : Various type of inhibitors

Table 2. List of inhibitors derived from matrices.

JBF

Matrix	Inhibitor	Mode of action
Blood	Heme/hemoglobin	Release of iron ions/competition with template
	Leukocyte DNA	Competition with template
	IgG	Binding to ssDNA
	Lactoferrin	Release of iron ions
	Antiviral drugs (e.g., acyclovir)	
Blood (anticoagulant)	EDTA	Chelation of Mg ²⁺
	Heparin	Binding to DNA, competition with template and direct interaction with polymerase
Muscle, eye fluid	Myoglobin	Release of iron ions
Hair, skin	Melanin	Binding to polymerase
Stomach	Bile acids	
Bone	Collagen	Alteration of ion composition by binding cations
Feces	Bile salts	Direct effect on polymerase
	Phytic acid	Chelation of Mg ²⁺ or change in ion content if present as salt
	Polysaccharides	Binding to polymerase
	Bilirubin	Competition with template
Urine	Urea	Prevention of noncovalent bonding, acting directly on polymerase or hindering primer annealing Bioanalysis 14(21) 1391–1405 (20

Need for addition of matrix to the reference standard sample

- ✓ In general, the matrix of the standard sample should be the same as that of the measurement sample.
- ✓ If it is shown that there is no effect on the calibration curve data due to the presence or absence of matrix DNA, there may be no need to add matrix DNA.
- ✓ When measuring multiple organs, representative organ-derived DNA (ex. liver) may be used for matrix of standard sample, if the matrix effects are same between organs.

Note: The extracted nucleic acids may differ in quality depending on the tissue of origin.

Ex. Skin – High levels of melanin, a PCR inhibitor Feces – Abundant PCR inhibitors

15th JBF Symposium, DG2017-33

http://bioanalysisforum.jp/

qPCR measurement (Step5) - Example of Matrix Effect -

Ex1) 10^5 copies/rxn of positive control is added to gDNA from various tissues

JBF

Cq levels are usually observed in the same way as positive controls, but Cq are higher or not observed if there is an inhibitor in gDNA.

Ex2) Inhibitory effect is improved by dilution of gDNA

When the added gDNA is 1 μ g/rxn, Cq level is ND. When diluted to 100 or 10 ng/rxn, Cq levels recovered in a dose-dependent manner.

In 10 ng/rxn, Cq level is same as positive control.

qPCR measurement (Step5) - Matrix Effect -

Measures against inhibition

JBF

- 1. Sample dilution (See previous page)
 - The simplest and most effective response
 - Result in reduction of assay sensitivity
- 2. Selection of appropriate reagents
 - Selection of appropriate DNA polymerase
 - Optimize buffer system
- 3. Use of appropriate controls

FDA Guidance for industry: gene therapy clinical trials (2006)

15th JBF Sympos Samples should be assured individually, as the amounts of PCR inhibitors may be vary from sample to sample.

1. Consideration common by qPCR, RT-qPCR

2. RT-qPCR considerations

- 3. Specific issues for cell quantification
- 4. Assay assurance

Assay method

J_{BF}

Category	Method	Std curve	Description	Application
absolute quantification (mainly DNA)		\bigcirc	Quantification using calibration curves generated with standard material of known copy number	Quantification of GMO* and microorganisms
Relative quantification (mainly RNA)	Calibration curve method	0	Calibration curves are generated with relative values such as dilution rate. With this calibration curve, comparative quantification can be performed.	Gene expression analysis
	ΔΔCq method	Х	The difference in Cq values between the target and reference genes in the sample is compared to the control sample and calculate a relative amount.	Gene expression analysis
15 th JBF Symposium, DG2017-33 *Genetically Modified Organism				

Reference gene (endogenous control gene)

Objective: Correct the expression level of target genes

- The expression level of endogenous control genes reflects the **quality of the RNA** and the **efficiency of the RT response**.
- Traditionally, **GAPDH and β-actin** have been used, but there are many reports that their expression levels are fluctuating.

Incorrect setting of endogenous control genes may lead to an overestimate/underestimate of the expression level of target genes.

Caution : 1. Is the level of expression in the target cell or tissue appropriate?

2. To investigate the expression in response to stimuli

Expression level are corrected using the average of two to three reference genes

Reference : Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes: Vandesompele et al., 2002. 3(7) Genome Biology 2002.

Quantification of mRNA using real-time reverse transcription of PCR (RT-PCR): trends and problems: Bustin, 2002.29, 23-39. J Mol Endo

1. Consideration common by qPCR, RT-qPCR

2. RT-qPCR considerations

3. Specific issues for cell quantification

4. Assay assurance

JBF Target genes for detecting cell therapy products (CTPs)

Target genes in CTPs

In the case for biodistribution of CTPs, **multicopy gene** should be used.

The most studied target sequence

<u>Alu sequence</u>

The most studied target for qPCR detection of CTPs

- ✓ Primate-specific repeat
- ✓ Length : about 300 bases

✓ Among the SINE (short interspersed element) in human gene,

- Alu has the most copies (about 10⁶ copies)
- $\checkmark\,$ Alu sequence insersions into genes differ in individuals.

Because PCR target is abundant in human cells, it is **difficult to remove contamination**.

Human DNA contamination from reagents and consumables cannot be completely removed

15th JBF Symposium, DG2017-33

The number of cells is converted from the number of copies obtained in the actual measurement

- 1. Consideration common by qPCR, RT-qPCR
- 2. RT-qPCR considerations
- 3. Specific issues for cell quantification
- 4. Assay assurance

1 µg gDNA per

reaction is impractical

Lower limit of quantification (LLOQ)

The FDA guidance on gene therapy¹⁾ recommends that

LLOQ be <u>50 copies of vector per µg of gDNA, with 95% CI*</u>

*Confidence interval

http://bioanalysisforum.jp/

Q: Actually 1µg gDNA is added in one PCR reaction?

- Typically, Total DNA amount is up to 200 ng in one PCR reaction
- Only small amount of DNA may be extracted in small tissue
- Large amounts of gDNA may increase the amount of PCR inhibitors

However,…

Br

50 vector -----1µg gDNA 5 vector -----100ng gDNA 0.5 vector -----10ng gDNA

Detection with 95% CI is almost impossible, because theoretical limits detectable with 95% CI are 3 Copies²⁾.

To set an adequate LLOQ, the greatest amount of attainable gDNA having no effect on the measurement should be used for qPCR.

1) FDA Guidance for industry: gene therapy clinical trials (2006)

2) The MIQE Guidelines. Bustin et al., 2009. Clinical Chemistry 55:4, 611-622

- ✓ Based on our experiences, the acceptable variation in qPCR Cq values is \pm 0.25 or less with technical issues and \pm 0.5 or less with biological variations, which makes a total acceptable variation of \pm 0.75 or less.
- ✓ This corresponds to a variation of -41 to +68% when Cq values are converted to copy numbers.

Considering the above, realistic criteria of accuracy and precision is around $\pm 50\%$.

Validation items and criteria for qPCR (TBD)

JBF

Item	Criteria
Accuracy & Precision	Around 50%
Calibration curve	$r^2 \ge 0.98$, Amplification efficiency: 85 $\sim 110\%$
Specificity	No amplification in NTC and NC are desired. However, if amplification is observed, itmight be considered appropriate if the Cq values of these controls are higher than LLOQ by 1.5.
Matrix effect	QC samples are spiked into the control gDNA stock and H2O, with Cq differences of <1.5 and calibration curve slope of-3.6 to-3.1. If inhibitions are observed, reexamination of DNA extraction method and/or sample dilutions should be considered.
LLOQ	Minimum concentration that meets the criteria for accuracy & precision
LOD	Concentration detectable with 95% reliability.
Stability	Cq change <1.5
Recovery	Recovery rate is more consistent and reproducible than the value itself.

The 'fit-for-purpose' approach is considered as important in the qPCR assay.

- ✓ Development of cell and gene therapy products is also expected to continue at a rapid pace, leading to the increased use of qPCR under regulation.
- ✓ However, numerous challenges exist in the development of a qPCR method with excellent accuracy and precision.
- ✓ For bioanalysts attempting qPCR, it is vital that its advantages and disadvantages be understood and validation criteria be established according to the study purposes.
- ✓ Therefore, continued discussion and dissemination of information are critical for its future use.
- ✓ Although digital PCR was not discussed herein, the latest technologies should be considered, as the increased demand for qPCR may catalyze the development of next-generation quantitative techniques.

http://bioanalysisforum.jp/

Back up

Basic mechanism of PCR –Quantification of RNA-

BF

In the case of ΑΑΑΑΑΑ **mRNA** expression analysis and Oligo dT primer, RNA virus quantification, Randam primer, etc. analytical target is RNA. TTTTTTT **mRNA** Reverse-transcriptase synthesizes cDNA. **mRNA** Reverse transcription (RT) step is required. **cDNA** RNase H degrade RNA, leaving single-stranded cDNA. **cDNA**

qPCR is performed using cDNA as a template.

15th JBF Symposium, DG2017-33

http://bioanalysisforum.jp/

JBF Basic mechanism of PCR –Hydrolysis Probe labeled with fluorescent-

1 Fluorescence of the reporter is absorbed by quencher (FRET).

② Fluorescence is generated by the hydrolysis of the probe by the extension reaction.

^{15&}lt;sup>th</sup> JBF Symposium, DG2017-33

B Basic mechanism of PCR –Data analysis-

Amplification Plot

Plotted fluorescence signal for each cycle

amount of the original sample, the amplification curve is obtained in one cycle difference.

JBF Basic mechanism of PCR –Data analysis-

Standard Curve

By plotting Cq of the calibration curve samples against the copy-number

Copy Number (Log)

If there is a 2-fold difference in the theoretical amount of the original sample, the amplification curve is obtained in one cycle difference.

PCR efficiency can be calculated from the slope of the calibration curve.

PCR Efficiency

E (PCR Efficiency) = $10^{(-1/\text{slope})} -1$

% In the case of theoretical amplification, PCR efficiency =100 % Slope of the calibration curve \Rightarrow -3.32 http://bioanalysisforum.jp/

Discussed in DG2017-33

Table 1. Application of quantitative polymerase chain reaction for bioanalysis.					
Type of product	Type of test	Target to be detected	qPCR or RT-qPCR	Matrix	
Gene therapy (viral vector, plasmid, etc.)	Property analysis (determining vDNA, vRNA, vector DNA Both (depends on v concentration)		Both (depends on vector)	None	
ſ	Biodistribution	vDNA, vRNA, vector DNA	Both (depends on vector)	Host tissue	
	Viral shedding (detection of shedding)			Urine, feces, blood, etc.	
	Viral shedding (confirmation of infectivity)	vmRNA	RT-qPCR	Host tissue	
	Gene expression analysis	mRNA.	RT-qPCR	Host tissue	
Oligonucleotide therapeutics	Gene expression analysis	mRNA.	RT-qPCR	Host tissue	
Cell therapy	Property analysis (detection of undifferentiated iPSCs)	mRNA. (derived from undifferentiated iPSCs)	RT-qPCR	Cell product	
	Biodistribution	gDNA (derived from cell product)	qPCR	Host tissue	
Vaccine	Challenge test (analysis of viral titer)	vDNA or vRNA	Both (depends on virus)	Host tissue	

iPSCs: Induced pluripotent stem cells; qPCR: Quantitative polymerase chain reaction; RT-qPCR: Reverse transcription quantitative polymerase chain reaction.

15th JBF Symposium, DG2017-33

Bioanalysis 14(21), 1391–1405 (2022)

BF NA stability (After Step4)

There are several issues regarding evaluation of NA stability

1. Stability assessment of the extracted DNA is feasible.

 \rightarrow Stability can be assured by measuring qPCR over time.

2. Stability in tissues?

 $\text{Issue}\ \textcircled{1}$

It is difficult to create a state in which target nucleic acids are present in tissues.

adding NA or virus/cell to tissue sections or homogenates, and cryopreservation

Issue ②

Taking into account the variation of extraction efficiency, stability evaluation may be challenging.

Reference Standard for RNA assay

JBF

Efficiency of RT is not constant. The reference material is not RNA but DNA

	Pros	Cons	Application
Plasmid	 Highly stable Easy to produce large amounts (initial cloning is necessary) Known copy number 	 Equivalence to Analyte 	 Absolute quantification
Synthetic NA	 Flexibility of sequencing No cloning required Known copy number 	 Equivalence to Analyte 	 Absolute quantification
cDNA	 Equivalent to analyte 	•Copy number unknown	 Relative quantification

http://bioanalysisforum.jp/